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REPORT

Mutations in Cohesin Complex Members SMC3 and SMC1A
Cause a Mild Variant of Cornelia de Lange Syndrome with
Predominant Mental Retardation
Matthew A. Deardorff, Maninder Kaur, Dinah Yaeger, Abhinav Rampuria, Sergey Korolev, Juan Pie,
Concepcion Gil-Rodrı́guez, Marı́a Arnedo, Bart Loeys, Antonie D. Kline, Meredith Wilson,
Kaj Lillquist, Victoria Siu, Feliciano J. Ramos, Antonio Musio, Laird S. Jackson, Dale Dorsett,
and Ian D. Krantz

Mutations in the cohesin regulators NIPBL and ESCO2 are causative of the Cornelia de Lange syndrome (CdLS) and
Roberts or SC phocomelia syndrome, respectively. Recently, mutations in the cohesin complex structural component
SMC1A have been identified in two probands with features of CdLS. Here, we report the identification of a mutation in
the gene encoding the complementary subunit of the cohesin heterodimer, SMC3, and 14 additional SMC1A mutations.
All mutations are predicted to retain an open reading frame, and no truncating mutations were identified. Structural
analysis of the mutant SMC3 and SMC1A proteins indicate that all are likely to produce functional cohesin complexes,
but we posit that they may alter their chromosome binding dynamics. Our data indicate that SMC3 and SMC1A mutations
(1) contribute to ∼5% of cases of CdLS, (2) result in a consistently mild phenotype with absence of major structural
anomalies typically associated with CdLS, and (3) in some instances, result in a phenotype that approaches that of
apparently nonsyndromic mental retardation.
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The cohesin proteins compose an evolutionarily con-
served complex whose fundamental role in chromosome
cohesion and coordinated segregation of sister chromatids
has been well characterized across species.1,2 Recently, reg-
ulators of cohesin and a structural component of the com-
plex have surprisingly been found to cause phenotypically
specific human developmental disorders when mutated.
Mutations in NIPBL, the vertebrate homolog of the yeast
Sister chromatid cohesion 2 (Scc2) protein, a regulator of
cohesin loading and unloading, are responsible for ∼50%
of cases of Cornelia de Lange syndrome (CdLS [MIM
#122470 and #300590]).3–5 Mutations in another cohesin
regulator, ESCO2, have been found to result in Roberts
syndrome and SC phocomelia.6,7 Two mutations in the
cohesin structural component SMC1A (for structural
maintenance of chromosomes 1A based on revised HUGO
nomenclature; also called “SMC1L1”) were recently found
to result in an X-linked form of CdLS.8 The conserved
developmental perturbations seen in these disorders are
likely the result of disruption of the cohesin complex’s
role in facilitating long-range enhancer promoter inter-
actions and subsequent transcriptional dysregulation.9,10

CdLS is a dominantly inherited genetic multisystem de-

velopmental disorder. The clinical features consist of cran-
iofacial dysmorphia, hirsutism, malformations of the up-
per extremities, gastroesophageal dysfunction, growth
retardation, neurodevelopmental delay, and other struc-
tural anomalies (see facies and limbs of patient 1P in fig.
1).11,12 The mental retardation seen in CdLS, although
typically moderate to severe, displays a wide range of
variability.12

The facial features of an individual with classical CdLS
are unique, are easily recognizable, and may be among the
most useful diagnostic signs. A milder CdLS phenotype
has been reported consistently,11,13–15 characterized by less
significant psychomotor and growth retardation, a low-
er incidence of major malformations, and milder limb
anomalies15 and accounting for ∼20%–30% of the CdLS
population.15

Mutations in NIPBL account for ∼50% of CdLS cases
and have been shown to cause both mild and severe
forms.3,16,17 The recent discovery that mutations in the X-
linked SMC1A gene also result in a variant of CdLS8 sug-
gests that other cohesin complex members may contribute
to the etiology of CdLS and related disorders. Here, we
report the screening of 115 NIPBL-mutation–negative in-
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Figure 1. Facies and hands of classic CdLS in SMC3- and SMC1A-mutation–positive individuals. Proband numbers are indicated. A “P”
following the number indicates proband, and an “S” indicates an affected sister. Facial features and upper extremities are shown for
1P, a patient with classic CdLS and a truncating NIPBL mutation; 2P, a male with a sporadic SMC3 E488del mutation; 3P, a female with
a sporadic V58-R62del mutation; 4P, a male with a sporadic F133V mutation; 6P, a male with a sporadic R496C mutation; 7P and 7S,
two sisters of family 2 with the R496H mutation and mosaicism in the unaffected parent; 8P and 8S, two sisters of family 1 who share
a R496H mutation; 9P, a female with a sporadic R496H mutation; 10P, a male with a sporadic R711W mutation; 11P, a female with a
sporadic R790Q mutation; and 12P, a female with a sporadic F1122L mutation.

dividuals with sporadic and familial CdLS and probands
with CdLS-variant phenotypes for mutations in the co-
hesin complex components SMC3 and SMC1A.

Mutation analysis.—All probands were suspected to have
CdLS or CdLS variant phenotypes by clinical geneticists
experienced in the diagnosis of CdLS, and all were enrolled
under an institutional review board–approved protocol of
informed consent. All were prescreened for mutations in
the 46 coding exons of NIPBL by use of conformation-

sensitive gel electrophoresis and/or direct sequencing,
as reported elsewhere.3 No NIPBL mutations were prev-
iously identified in these 115 probands. SMC3 and
SMC1A (GenBank accession numbers NM_005445 and
NM_006306) were analyzed by PCR amplification and di-
rect sequencing of coding exons 1–29 and 2–25, respec-
tively. Oligonucleotide primer sequences and PCR con-
ditions for SMC3 and SMC1A are available on request.

On the basis of examination, clinical information, and/
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Table 1. Characteristics of NIPBL-Mutation–Negative Probands with CdLS

Feature and
Subcategory

SMC3-Mutation
Positive

SMC1A-Mutation
Positive

Percentage
SMC1A-Mutation

Positive

Facies:
Typical 0/50 6/52 12
Atypicala 1/46 3/49 6

Sex:
Male 1/43 3/54 6
Female 0/53 7/54 13

Severityb:
Mild: 1/51 9/60 15

Males 1/20 2/23 9
Females 0/31 7/37 19

Moderate 0/27 0/27 0
Severe 0/18 0/14 0

Limb deficiencies:
Present 0/13 0/11 0
Absent 1/83 9/90 10

Familial cases 0/15 3/20 15

NOTE.—Clinical information was not available from all patients, so all feature categories do
not sum to 115. The denominator in each cell indicates the number screened within each
subcategory.

a Atypical facies usually consisted of a more prominent nose with less upturn, lack of
synophrys or arched eyebrows, and/or no micrognathia.

b Severity was determined as by Gillis et al.3

or photographs, patients for whom detailed information
was available were categorized as indicated in table 1,
which also shows the percentage of SMC3 and SMC1A
mutations in each subgroup. A single mutation was iden-
tified in SMC3 in 1 of the 96 probands screened. Eight
unique SMC1A mutations were identified in 10 of 115
probands, giving a prevalence of 9% among this cohort
of NIPBL-mutation–negative probands and an overall
prevalence of ∼5% among unscreened patients with CdLS.

One male (2P) (fig. 1 and tables 2 and 3) was found to
have a unique SMC3 mutation that comprised a 3-nt de-
letion (c.1464_1466delAGA) and that resulted in the de-
letion of a single amino acid (p.E488del). Paternity was
confirmed, and neither parent carried the mutation,
which indicates a de novo event. Furthermore, this change
was not observed in 1350 control alleles.

Nine probands had missense mutations in SMC1A, and
one had an in-frame deletion of 5 aa. One amino acid
residue (R496) was mutated in 4 unrelated probands, 2 of
which involved familial cases, to account for 7 of the 14
mutation-positive patients. One R496H familial case (in-
volving patients 8P and 8S) (fig. 1 and tables 2 and 3)
resulted from germline mosaicism, and the other (involv-
ing patients 7P and 7S) resulted from a somatic and germ-
line mosaic parent with no clinical features of CdLS. The
mother in the third family (5P) was found to carry the
SMC1A mutation (R496C) and is thought to have mild
mental retardation and small hands. A mutation-positive,
mentally retarded, affected half-brother developed speech
but is institutionalized. All other mutations (V58_R62del,
F133V, R196H, R711W, R790Q, and F1122L) were de novo
and were identified in patients with unaffected parents

who were negative for mutations. In addition, all muta-
tions were absent in 1220 normal control alleles. Analysis
of protein sequences for human, Fugu, Saccharomyces cer-
evisiae, and Thermotoga maritime, aligned by the ClustalW
method18 (MacVector [Accelrys]), demonstrated that all
mutated residues affect evolutionarily conserved amino
acids (fig. 2).

SMC3 and SMC1A mutations result in a mild variant of
CdLS.—Tables 2 and 3 list the mutations and clinical char-
acteristics of all probands and available affected family
members. Notably, the SMC3- and SMC1A-mutation–pos-
itive patients demonstrated very mild facial features, no
absence or reduction of limbs or digits, and no other major
structural anomalies. This is in contrast to classical CdLS
(see patient 1P in fig. 1), as summarized in table 4. As
noted for the patients studied by Musio et al.,8 several of
our patients had a more prominent nasal bridge (4P, 8S,
10P, and 12P) (fig. 1) than is typically seen in CdLS. It
should be emphasized that, unlike in classic CdLS, in this
cohort (1) 80% had birth weights that were normal, and
several probands (6P, 9P, and 12P) had growth and head
circumferences within the normal range; (2) all individ-
uals walked, and all but one acquired speech; and (3) all
had cognitive delays—however, some participated in
mainstream classes (3P and 4P), and one was employed
in a supervised position in a greenhouse (2P). Of six in-
dividuals with the R496H and R496C mutations, consid-
erable variability was noted for growth and development,
although all were considered to have mild CdLS. Poly-
morphisms identified in this work are shown in table 5.

Mapping of mutations to the cohesin crystal structure.—To
understand the molecular implications of SMC3 and
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Table 2. Dysmorphia and Minor Anomalies of SMC3- and SMC1A-Mutation–Positive Patients with CdLS

Characteristic

Patient

2P 3P 4P 5P 6P 7P 7S 8P 8S 9P 10P 11P 12P

Sex M F M M M F F F F F F F F

Gene mutated SMC3 SMC1A SMC1A SMC1A SMC1A SMC1A SMC1A SMC1A SMC1A SMC1A SMC1A SMC1A SMC1A

cDNA mutation 1464_1466delAGA 173del15 397TrG 587GrA 1486CrT 1487GrA 1487GrA 1487GrA 1487GrA 1487GrA 2131CrT 2369GrA 3364TrC

Protein effect E488del V58_R62del F133V R196H R496C R496H R496H R496H R496H R496H R711W R790Q F1122L

Brachycephaly � � � � � � � � � � � � �

Low anterior hairline � � � � � � � � � � � � �

Arched eyebrows � � � � Full � � � � � � � �

Synophrys � � � � � � � � � � � � Mild

Long eyelashes � � � � � � � � � � � � �

Palpebrae Normal Normal Normal Normal Mild ptosis Lacrimal duct stenosis Ptosis, lacrimal duct stenosis Normal Lacrimal duct stenosis Ptosis Lacrimal duct stenosis Lacrimal duct obstruction Mild ptosis

Myopia � � Astigmatism � � � � � �� �

Nasal bridge High Low High High Normal Low Low Low Low Low High Low High

Anteverted nostrils � � � Mild � � � � � � Mild � �

Long/featureless

philtrum � � � � � � � � � � � � �

Thin lips � � � � � � � � � � � � �

Downturned corners

of the mouth � � � � � � � � � � � � �

Palate High � Normal Normal High � � Posterior cleft High Normal Mild cleft �

Micrognathia � � � � � � � � � � � � �

Hearing loss � � � � � � � � � � � � �

Cutis marmorata � � � � � � � � � � �

Small hands � � � � � � � � � � � � �

Small feet � � � � � � � � � � � �

Proximally set

thumbs � � � � � � � � � � � � �

Clinodactyly of 5th

finger � � � � � � � � � � � � �

Restriction of elbow

movements � � � � � � � � � �

Hirsutism � � � � � � � � � � �

NOTE.—Blank cells indicate that information was unavailable.
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Table 3. Growth and Development of SMC3- and SMC1A-Mutation–Positive Patients with CdLS

Characteristic

Patient

2P 3P 4P 5P 6P 7P 7S 8P 8S 9P 10P 11P 12P

Sex M F M M M F F F F F F F F

Gene mutated SMC3 SMC1A SMC1A SMC1A SMC1A SMC1A SMC1A SMC1A SMC1A SMC1A SMC1A SMC1A SMC1A

cDNA mutation 1464_1466delAGA 173del15 397TrG 587GrA 1486CrT 1487GrA 1487GrA 1487GrA 1487GrA 1487GrA 2131CrT 2369GrA 3364TrC

Protein effect E488del V58_R62del F133V R196H R496C R496H R496H R496H R496H R496H R711W R790Q F1122L

Birth weight, percentile !3 8 75 10 8 !3 !3 23 11 40 15

Length at birth, percentile 25 16 35 29 !3 37 35 5

HC at birth, percentile !3 7 3 54 4

APGAR scorea 8/9 9/10 8/9

Feeding problems in infancy � � � � � � � � �

Weight at time of study,

percentile

!3 12 !3 53 18 !3 3 !3 44 4 !3 25

Height at time of study,

percentile

!3 !3 14 !3 86 !3 !3 !3 !3 73 6 25

HC at time of study,

percentile

!3 3 !3 75 !3 !3 !3 !3 10 !3 !3 25

Psychomotor delay � � � � � Nonverbal � � � � � � �

Mental retardation � Mainstream 2nd grade Autistic-like

behavior

�� �� � DQVp36;

DQMp68

� DQVp35;

DQMp45

� IQ p 59

Major malformations � Mild PS � ASD � � � � � � PS �

CNS anomalies � Normal CT scan � � �

GER � � � � � � � � � � � �

Seizures � � Single In the past In the past � �

Other medical problems Small hiatal hernia Intubated with

pneumonia, VU

reflux

Anxiety History of

encephalitis, now

hemiparetic

Pulmonic stenosis Intention tremor Recurrent sinusitis

NOTE.—Growth percentages were estimated from Centers for Disease Control and Prevention growth charts.19 ASD p atrial septal defect; DQM p developmental quotient, motor; DQV p developmental quotient, verbal; GER p gastroesophageal reflux; HC p head

circumference; PS p pulmonic stenosis; VU p vesicoureteral. Blank cells indicate that information was unknown.
a APGAR scores are indicated by score at 1 min/score at 5 min.
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Figure 2. Conservation of SMC3 and SMC1A and location of mu-
tations. Alignment of human, mouse, Drosophila melanogaster, S.
cerevisiae, and T. maritima SMC3- and SMC1-related sequences.
Identical residues are indicated in bold with dark shading. Similar
residues are indicated in normal font with light shading. Amino
acids for which human mutations have been identified are outlined
by boxes, with the position indicated above.

Table 4. Features of SMC3- and SMC1A-Mutation–Positive
Patients Compared with Classic CdLS

Time and Feature

Patients Positive
for Mutation in

Percentage
of Patients
with Classic

CdLSSMC1A SMC3

At birth:
Normal weight 8/10 0/1 32
Normal length 6/7 0/1 50
Normal HC 3/6 NA 15

At later timepoint:
Normal weight 6/12 0/1 15
Normal height 5/11 0/1 5
Normal HC 3/12 NA !5
Prominent nose 5/12 1/1 NA
Limb deficiencies/reductions 0/13 0/1 33
Small hands 11/12 1/1 93
MR and/or developmental delay 12/12 1/1 100
Acquired speech 11/12 1/1 35

NOTE.—Complete clinical information was not available from all mu-
tation-positive patients. The denominator in each cell indicates the num-
ber assessed for each feature. CdLS data on a 310-member cohort is
taken from Kline et al.20 and Jackson et al.12 Growth percentages were
determined from Centers for Disease Control and Prevention growth
charts.19 Normal growth parameters are defined as 13rd percentile for
age and sex. HC p head circumference; MR p mental retardation; NA
p not available.

SMC1A mutations, we capitalized on extensive previous
SMC protein biochemistry, electron microscopy, and x-
ray crystallography.1,2 SMC proteins consist of globular N-
and C-terminal domains that contain ATP-binding Walker
A and Walker B motifs, respectively. These motifs are jux-
taposed in the globular head domain of SMCs as a result
of an intramolecular antiparallel coiled coil (figs. 3 and 4).
A central domain of SMC1 (SMC1A in humans) forms a
globular hinge domain that interacts with a similar motif
of SMC3 to form a heterodimer. The C-terminal domains
of SMC1 and SMC3 also contain ATP binding cassette
(ABC) signature (or C) motifs. In addition to their inter-
actions at the hinge domain, the globular head domains
of SMC1 and SMC3 interact to complete two tripartite
ATP-binding pockets formed by the Walker A and B motifs
of one molecule and the signature/C motif of the other
(figs. 3 and 4). It has been shown that ATP binding pro-
motes association of the two intermolecular heads and
that ATP hydrolysis drives them apart22; both events fa-
cilitate the ability of cohesin to encircle chromatin.

In figure 3, SMC3 and SMC1A mutations are mapped
onto crystal data derived from the Thermotoga SMC hinge
domain dimer23 and a yeast Smc1 head domain dimer24

(NCBI Protein Database). The SMC3 E488del and the
SMC1A R496H, R496C, and E493A8 mutations all map to
the junction of the N-terminal coiled-coil and the hinge
(fig. 3A). This region is remarkably conserved from bac-
teria to humans (fig. 2).

The process of loading the cohesin onto DNA is de-
pendent on factors that include NIPBL (also known as
“Scc2”)25,26 and the hydrolysis of ATP.26,27 It has been
shown that mutations of the Bacillus SMC hinge domain
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Table 5. SMC3 and SMC1A Polymorphisms Identified

Gene and Nucleotide
Change

Amino
Acid Location dbSNP

Alleles
Identifieda

Allele
Frequency

SMC3:
c.�99CrA … 5′ UTR … 5/192 .03
c.15�89_90insA … Intron 1 … 1/20 .05
c.91�67CrG … Intron 2 rs11195194 192/192 1.00
c.255ArG p.S85S Exon 5 … 2/192 .02
c.350�21TrA … Intron 6 rs11195194 21/192 .11
c.350�30TrG … Intron 6 rs7914351 11/192 .06
c.351�9TrC … Intron 6 … 14/192 .07
c.548�45ArC … Intron 8 rs2275570 28/192 .15
c.548�4_3insAA … Intron 8 … 20/192 .10
c.547�92ArG … Intron 8 rs7911129 3/20 .15
c.724�5_6insT … Intron 9 rs11380915 10/192 .05
c.724�206_201delTTGTAG … Intron 9 … 3/20 .15
c.805�26ArG … Intron 10 rs11815960 2/20 .10
c.969�23ArG … Intron 11 … 3/192 .02
c.970�8GrA … Intron 11 rs11195199 28/192 .15
c.1092�18TrC … Intron 12 rs11195200 22/190 .12
c.1306�81ArG … Intron 13 … 1/20 .05
c.1365TrC p.Y455Y Exon 14 … 11/192 .06
c.1409�6TrC … Intron 14 … 1/192 .01
c.1410�48TrC … Intron 14 rs3737293 14/192 .07
c.2116�23GrA … Intron 19 rs7075340 192/192 1.00
c.2428�92ArG … Intron 21 rs3737292 21/192 .11
c.2644�48ArG … Intron 23 rs11195213 25/192 .13
c.2892�23TrC … Intron 24 … 4/192 .02
c.3039ArG p.S1013S Exon 25 rs17846396 192/192 1.00
c.3582�51GrA … Intron 28 … 8/192 .04
c.3973GrA … 3′ UTR … 1/192 .01

SMC1A:
c.�19CrT … 5′ UTR rs1264011 96/150 .64
c.1338�32ArC … Intron 8 rs1264008 7/145 .05

NOTE.—Numbering is based on SMC3 and SMC1A cDNA sequences (RefSeq accession numbers NM_005445 and
NM_006306, respectively), starting from the first nucleotide of the ORF. Nomenclature is according to den Dunnen
and Antonarakis21 and the Human Genome Variation Society Mutation Nomenclature Recommendations.

a The denominator indicates the total number of alleles screened.

disrupt both DNA binding22 and ATP hydrolysis.2 Thus, it
is possible that SMC3 and SMC1A mutations at the bound-
ary of the hinge domain disrupt DNA binding or ATP hy-
drolysis kinetics, leading to similar phenotypes as well as
to those seen for some mutations in NIPBL. Three SMC1A
mutations (V58_62del, F133V, and F1122L) occur in the
head domain (fig. 3B) and are positioned near the Walker
A, B, and signature/C motifs that could affect ATP binding,
ATP hydrolysis, and/or SMC1/SMC3 head-domain dimer-
ization, an ATP-dependent process.

The SMC1A mutations R196H, R711W, and R790Q and
the familial D831_Q832delinsE mutation8 all reside in the
coiled-coil domain (fig. 4). By use of the Coils program,28

which predicts the probability of a protein to form a
coiled-coil, these mutations had a small likelihood of dis-
rupting the coiled-coil arms. However, the alterations
caused by these mutations may affect the angulation of
the coiled-coil,29 resulting in impaired intra- or intermo-
lecular approximation of the SMC head domains, or dis-
rupt binding of accessory proteins to the cohesin ring.

SMC1A mutations in females.—In contrast to previous

work on SMC1A,8 10 of 14 total SMC1A-mutation–positive
individuals were female. Furthermore, we describe simi-
larly affected male and female probands, implying an X-
linked dominant mode of expression. Interestingly, sev-
eral males were rather mildly affected (4P and 6P) and no
more severely affected than many of the SMC1A-muta-
tion–positive females. Since SMC1A escapes X inactiva-
tion,30 it is likely that the mechanism in affected females
is due to a dominant negative effect of the altered protein
and less likely that is is due to decreased protein levels8

or skewed X inactivation. Consistent with this dominant
negative effect on cohesin, the SMC3 mutation is also a
single amino acid deletion.

The cohesin complex and mental retardation.—Of note, all
the patients described here have disease in the mild-to-
moderate range of CdLS and were ascertained as having
mild facial features reminiscent of CdLS, but none has
major structural anomalies typically seen in classic CdLS
(table 4). However, without exception, all had varying de-
grees of mental retardation (fig. 1 and tables 3 and 4).
Although the facial features in many of these individuals
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Figure 3. Mapping of SMC1A and SMC3 mutations to known SMC
crystal structure data. A, Mutations in the hinge domain are rep-
resented on the Thermotoga SMC dimeric hinge crystal structure.
Monomers are colored either red or blue. The darker red and blue
regions indicate the N-terminal portions of each monomer. Arrows
indicate the N- and C-termini, which are at the end of the coiled-
coil domain nearest the hinge region. Mutated residues are shaded
bright red. An asterisk (*) indicates the E493 altered residue re-
ported by Musio et al.8 The R496 residue in humans is a glycine
in Thermotoga (see fig. 2). B, Mutations placed on the yeast SMC1
head domain dimer. These regions are key in the binding and
hydrolysis of ATP, indicated by ball and stick molecules. Magnesium
molecules at the active sites are indicated by gray balls. Three
SMC1A mutations occur in the head domain—two in the N-ter-
minus and one in the C-terminus. The V58_R62del overlaps a loop
that is unstructured in the yeast SMC1 crystal structure but is
positioned near the Walker A and B motifs (yellow residues A and
B) and thus could affect ATP binding or hydrolysis. The F133V
mutation is adjacent to the Walker B motif that contains a serine,
which contacts ATP directly at the active site. The F1122L mutation
is in the signature/C motif (yellow residues C) of the C-terminal
head domain. It is positioned at the SMC1/SMC3 head-domain
intermolecular interface adjoining the adenine ring of ATP. Struc-
tural analysis was performed with Cn3D (NCBI Structure Group).

Figure 4. Schematic indicating the presumed organization of the
SMC1/SMC3 heterodimer and the locations of SMC1A and SMC3
mutations on the cohesin ring. SMC1 is shaded red, and SMC3 is
shaded blue, with darker red and blue regions indicating the N-
terminal portions of each monomer. Yellow circles indicate ATP
molecules bound in proximity to Walker A, B, and C motifs (a, b,
and c, respectively). The N-and C-termini are indicated. Mutation
locations are indicated by black circles. Altered residues reported
by Musio et al.8 are indicated by an asterisk (*).

may be appreciated by dysmorphologists experienced in
this diagnosis, for the most part, they would present to
clinical attention as individuals with mild-to-moderate
mental retardation, often without the hallmark short stat-
ure and/or microcephaly of CdLS (table 4). This strongly
suggests that brain development is the process most sen-
sitive to perturbation of these proteins. The relatively
small contribution of SMC3 (∼1%) and SMC1A (∼5%) mu-
tations in our study group may be the result of the selec-
tion bias of our study subjects, who were ascertained as
having CdLS or CdLS-variant phenotypes. There may be
a subset of individuals among the larger diagnostic cate-
gory of mental retardation spectrum disorders with an
apparently nonsyndromic etiology who may be carrying
the bulk of mutations in cohesin pathway genes. Fur-
thermore, additional “cohesinopathies” may result from
perturbation of the 115 additional components of this
complex that have yet to be associated with human
disorders.
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Accession numbers and URLs for data presented herein are as
follows:

GenBank, http://www.ncbi.nlm.nih.gov/Genbank/ (for human
SMC3 [accession number NM_005445] and human SMC1A [ac-
cession number NM_006306])

HUGO Gene Nomenclature Committee, http://www.gene.ucl
.ac.uk/nomenclature/

Human Genome Variation Society Mutation Nomenclature Rec-
ommendations, http://www.hgvs.org/mutnomen/

NCBI Protein Database, http://www.ncbi.nlm.nih.gov/ (for stru-
ture coordinates for the Thermotoga SMC hinge domain [ac-
cession numbers 1GXLB and 1GXLA] and S. cerevisiae Smc1
head domain [accession numbers 1W1WA and 1W1WB])
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.nlm.nih.gov/Omim/ (for CdLS)
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